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Field measurements of reflector distortions, using the theodolite angle differ-
ences and fixed arc lengths from the vertex of the paraboloid, are based on appar-
ent displacements normal to the line of sight. Two computing methods are
described which use directions information from the structural computer analysis
to upgrade the readings in the pathlength errors sense. Comparative rms values
of the 1/2 pathlength errors, after a paraboloid best fit, resulting from the field
measurements, the analytical analysis, and the rms equivalences to RF radio star
measurements, are overlayed on an rms surface tolerance versus elevation angle
chart for the 64-m-diam antenna. Close rms agreements allow designation of an
error tolerance of +=0.08 mm (0.003 in.) for the field-measured rms values.

l. Introduction

The state-of-the-art method of measuring distortions of
a large ground-based antenna uses an angle-measuring
theodolite mounted on the axis of symmetry just above
the vertex of the paraboloid. The only other dimension
measured is the arc length from the vertex to the target
located on the surface of the paraboloid (Fig. 1). Since
the theodolite can only measure apparent deflections mea-
sured normal to its line of sight, the actual RF pathlength
error may not be evaluated within useful precision when
the Z components of the readings are input to the rms
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computer program (Ref. 1). This anomaly was apparent
since the first output of the three vector components from
the analytical solutions.

One solution proposed by R. Levy (Ref. 2) uses analyt-
ically computed three-component distortions read by
simulated field readings by the theodolite method. The
difference in the two rms values can then be applied as
corrections to the field-measurement values. This method,
revised to use vector analysis, is described and is now
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incorporated as subroutine ANAFLD as part of the rms
package (Type D).

Another solution method, also described in this article,
combines the single-dimension field measurement with
direction vectors from the analytic solution to determine
the correct rms value. Subroutine FIELD modifies the
data before its input to the best fitting computation

(Type C).

Table 1 defines terms ysed in the discussion that follows.

Il. Process of Field Measurement

Normally, the surface panels are first installed and ad-
justed close to the center of the adjustment range with
the edges faired from one panel to the next one at zenith
look. Then, the target mounting holes are drilled to pre-
determined arc distances from the vertex of the parabo-
loid using a strap gage. The change in arc distances is
assumed presently to be negligible for the different ele-
vation angle positions.

At an elevation angle selected for the “perfect” parabo-
loid position (45-deg for the 64-m-diam antenna), each

Table 1. Definition of terms

Deflection vector

Field reading QT

Instrument angle reading ¢
Line-of-sight vector
Measuring-plane

X-axis

XY-plane

Y-axis

Z-axis

Zero-plane

vector from the original position of the target
point to its deflected position

the projection of the deflection vector onto the
line which passes through the target point and is
perpendicular to the line of sight. The unit vec-
tor in the direction QT/|QT| has components,
denoted Fx, Fy, F;. Explicitly: if the target point
Q has coordinates X, Y, Z, then

—Xsiny Fo— —Ysiny
(X2 +Y3)%’ X+ YR

FZZCOSll/

FX=

the angle between the line of sight and its pro-
jection onto the zero-plane

vector from the point (0,0,38 cm) (0,0,15in.) to
the target point

plane determined by the Z-axis and the line of
sight; field measurements are made in this plane

line in XY-plane perpendicular to Y-axis; this line’
is parallel to the elevation axis of an az-el an-
tenna

plane perpendicular to Z-axis, passing through
the vertex

line which passes through the paraboloid vertex
and points to zenith when elevation angle is 0
deg (to horizon)

axis of symmetry of undeflected paraboloid

plane perpendicular to Z-axis, passing through
the theodolite rotation axes and the datum tar-
gets; this is the reference plane for theodolite
measurements
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Fig. 1. Field measurement scheme

target is sighted with a theodolite located above the ver-
tex and on the axis of symmetry, with the zero-plane
aligned to the four datum reference targets located in
the reflector structure. Two of the datum targets are lo-
cated just above the elevation bearings along the X-axis
and the other two are in the wheel girder of the 64-m-
diam antenna reflector structure along the Y-axis. The
angle ¢ between the target and the zero-plane, calculated
from the focal length and arc distances of the paraboloid,
is used to set the targets of the panels for the “perfect”
paraboloid case (Fig. 1).

After the reflector is rotated to another elevation angle,
the reading process is repeated for the same target points.
There will be a change in the theodolite’s angle y, de-
noted as ¢’ in Fig. 1. Thus, the apparent deflection of
target Q will be a vector Q'T, which is normal to the line
of sight.

lll. Correction to Field Measurement from Motion
of the Measuring Paraboloid (Type C)

Due to the change in direction of the gravity load for
the different elevation angle positions, the datum targets
themselves deflect in a manner (Fig. 1) which effectively:

(1) Rotates the measuring paraboloid as determined by
the datum plane about the X-axis by angle ¢. Since
¢ is very small, we can make the approximation:

¢ ~ sin ¢.

(2) Offsets the datum plane in the direction of the sym-
metry axis (Z-axis) by offset R.
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It can thus be concluded that the field measurements,
at elevation angles other than the perfect paraboloid
angle, are made with respect to a rotated and translated
coordinate system. Therefore, correction factors to Q'T
must be applied to obtain the true field readings (QT) as
follows:

QT =QT+CO +CR

where the vector which represents the offset motion,

CO = (0,0,R)- Qr
QT
= RFZ
= Rcos ¢

and the vector which represents the rotation motion,

CR = (0, —¢Z, ¢Y)
QT
= (0’ —(}SZ, ¢Y) pirpe—
QT
= — ¢ZFy + ¢YF,

gy [T )

since

(X247
T 4F

IV. Correction of Field Measurements By Adding
Direction Sense from Analytical Structural
Analysis (Type C)

Figure 2 shows a typical analytically computed distor-
tion vector QP with its three components U, V, and W
in the X,Y,Z coordinate system.

When this vector is field read, the theodolite’s field mea-
suring plane X’0Z rotates about the symmetric axis 0Z
of the measuring paraboloid and picks up the change in
angle y (Fig. 1) from point Q to P. Since the angle ¢
measured by the theodolite to P and P’ is essentially the
same, the component QP’ in the measuring plane is used
in the calculations.
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Fig. 2. Transformation of distortion vectors
to measuring plane

To compute QP’, the distortion vector, QP in the X, Y, Z
coordinate system must be transformed to the measuring

plane X’0Z (Appendix A). The resulting components are
U’, V/, and W.

Since the magnitude of the distortion vector is very
small with respect to distance X’, the two lines of sight
may be considered to be parallel for vector transformation
calculations in the measuring plane. Of course, an optical
micrometer used on the theodolite would conform exactly
to the above assumption.

To upgrade the field-measured deflection Q’T, the di-
rection sense from the analytically computed deflection
vector QP’ may be combined (Fig. 3). The direction sense
of QP’ determined by U’ and W is combined with the
magnitude and direction of the field measurement QT to
determine the magnitude of the theoretically true deflec-
tion vector QP’ (Appendix B).

The vector QP’ is then normalized, that is, projected
to the normal vector at point Q as QN since the magni-
tude of the normal error is a direct function of the path-
length error. A further conversion is made for compati-
bility to the rms analysis by dividing the normal by the
tangent angle to result in a AZ deflection input (Appen-
dix C).

There has arisen a problem connected with the accu-
racy tolerance of the field measurements when QT - QP’
is near zero. This method requires more careful and accu-
rate field readings at these target points. To eliminate the
effect on the accuracy of the final rms number, any target
reading for which (QT + QP’) < 0.05 rad is presently de-
leted from the least squares analysis.
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V. Computation of Theoretical Field Measurements
from Analytically Computed Distortion
Vectors (Type D)

The object of this computation is to simulate the theod-
olite method of measuring the analytically computed
three-component distortion vectors. Then, the resulting
rms output from the best-fit program may be compared
to the rms output from field measurements without cor-
rections.

As described in Section IV with Figs. 2 and 3, the field
measurement vector QT subtends the “transposed to the
measuring plane” vector QP’. However, now the magni-
tude as well as the direction of vector QP’ are known.
Therefore, vector QT may be computed and input to the
best-fitting program to output the rms figure.

In order to satisfy the data requirements of the rms pro-
gram coding, the AZ component QK of vector QT is used
with U and V set equal to 0.

VL. Standard Field and Assumed Normal Direction
Computations (Types A and B)

For computing the standard field measurement rms
value (Type A), the AZ component QK of the apparent
deflection vector QT normal to the line of sight is com-
puted by dividing by the cosine of the instrument angle y
(Fig. 4).

Instead of assuming that the deflection vector is normal
to the line of sight, one can assume that all deflections are

a = TANGENT

ZERO-PLANE

L .

Fig. 3. Adding direction sense to field measurement
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Fig. 4. Field measurement conversions for
Type A or B analysis

in the line normal to the surface of the reflector (Type B).
Using this assumption, QN equals QT divided by the
cosine of (e — ¢) and it follows that QK’, the AZ com-
ponent, is computed by dividing by the cosine of the
tangent angle «. This results in the Type B rms answers.

VII. Results and Conclusions as Applied to the
64-m-diam Antenna Data

The different rms analysis methods for field measure-
ments were typed from A to D and applied to the avail-
able 64-m-diam antenna data. Types E and F are from
analytical computations. Since there was a large change
(15,873 to 18,140 kg) (35,000 to 40,000 Ib) in the weight
of the cassegrain field cone assembly from the monocone
to the tricone configuration, the systems were separately
evaluated and the answers for reflector structure deflec-
tions exclusively are noted in Table 2.

At the present time, results from RF tests are available
(Ref. 3) for only the monocone configuration; the answers
projected from Table 2, with the addition of the surface
panel rms distortions, etc., are overlayed on an upgraded
curve from page 17 of Ref. 3 and reproduced here as
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Fig. 5. RMS surface tolerance vs elevation angle (64-m-
diam antenna, monocone cassegrain system; zenith at-
tenuation = 0.06 dB)

Fig. 5. The upgrade of the curve is a change in the zenith
attenuation from 0.036 to 0.060 dB.

The conclusions that can be made at the present time
are:

(1) The field rms distortion value, using the present
theodolite system and Type B or Type (F — D + A)
for the 64-m-diam antenna, should be within +0.08
mm (0.003 in.) of the true value.

(2) For a practical answer, the Type B analysis method
could be used for the present theodolite system.
This is the method used to report the field rms dis-
tortion described in Ref. 4.

(3) The Type C method requires very precise theodo-
lite measurements, a condition marginally accom-
plished at the present time.

(4) There is a definite need to improve the accuracy of
the field measurement method, if the method is used
for larger antennas.

(5) The NASTRAN computer analysis, used for the
structural model plates and rigid jointed bars in the
tie truss and the rectangular girder, definitely im-
proves the fit between the analytic results and field
measurements.
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Table 2. 64-m-diam antenna reflector structure rms distortions after best fit
{focal length change included)?

. Horizon look Zenith look
Type RMS analysis method rms valve, mm (in.) rms value, mm (in.)
Tricone cassegrain system
A bStandard field measurement 0.91 (0.036) 1.45 (0.057)
B bAssumed normal direction field measurement 0.97 (0.038) 1.57 {0.062)
C bField reads 4 analytical directions (field subroutine) 1.09 {0.043) 1.63 (0.064)
D Theoretical field reads (ANAFLD subroutine) 0.94 (0.037) 1.40 (0.055)
F Latest NASTRAN analysis 4 reflector mode! + some rigid joints 1.01 {(0.040) 1.52 (0.060)
Monocone cassegrain system

A bStandard field measurement 0.81(0.032) 1.45 (0.057)
B’ bAssumed normal direction field measurement 0.86 {0.034) 1.60 (0.063)
E STAIR analysis ¥, reflector model + pin joints 1.01 {0.040) 1.90 (0.075)
F Latest NASTRAN analysis 1, reflector model + some rigid joints 0.94 (0.037) 1.40 (0.055)

2Surface panels were set at 45-deg elevatio ..

bHorizon field measurements were made at 6-deg elevation.
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Appendix A

Coordinate Transformation of the Deflection Vectors
to the Theodolite’s Measuring Plane

With the measuring plane restricted to rotation ¢ only
about axis 0Z (Fig. 2), only X and Y components of deflec-
tion vectors are transformed.

Based on the basic coordinate system,

U=rcos¢
(A-1)
V =rsing¢
where
r = (U2 + V2)i/2
Transformed to the measuring plane,
U” = rcos (¢ — ) = rcos ¢ cos § + rsin ¢ sin 4
(A-2)

V” =rsin(¢ — ) = rsin¢ cos § — rcos ¢ sin §
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Substituting Eq. (A-1) into Eq. (A-2) results in

U” =Ucos§ + Vsin?
V” =Vcos§ — Usin g
W =w

(A-3)

Also, for target point Q, if Q has components (Xq, Yq, Z),

o= (X§ +Yip4

4=0
Zi=Zy

Y
f =tan'—

X

Also, in this coordinate system, the vector QT /||QT| has
components (F, F}, F7), where

T = siny
Fy=0
F3=cosy
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Appendix B

Resolution of the Field Measurement Vectors with the
Analytically Computed Directions

The magnitude of the theoretical deflection vector QP’
in Fig. 3 is computed as follows.

If the direction vectors of QP’ are (U’, W’), then from
§ = [(U)* + (W]
vector

U w
QF = 0P| (5. ) = QB (0", W")

where U” and W” are unit vector components of QP’.
If the unit vector of QT has components (F%, F7), the circle
product of QP’ and the unit vector of QT equal QT when
angle QTP’ =90 deg (because we assume that the two
lines of sight are parallel) or

(Fx, Fz)* |QP| (U”, W”) = |QT]|
Transposing,

|QT||

IQPl = 57 T Fw” (B-1)
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To then compute for the magnitude of the normal error
QN, when angle QNP = 90 deg:

|QN|| = projection of QP’ onto the unit normal

When Ny and N, are unit vector components of the
normal,

|QN]| = (Nx, Nz) - | QP (U”, W”) (B-2)
Substituting Eq. (B-1) into Eq. (B-2),

|QT|| (NxU” + N, W”)
(FU" + F,W”)

lON|| =

To establish compatibility with the rms analysis, the nor-
mal distortion |QN] is converted to a AZ by
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Appendix C

Resolution in the Measuring Plane to Simulate
Field Measurements

In Fig. 3, the circle product of the two vectors which is equal to

QT and QP’ = [|QT] X ||QP|| X cos lQ] = vru” +ww

where
If vector QT is a unit vector in the direction of QT, then
> U” = —~1Xsiny

QT = 1 X [|QP| cos ¢ W =1Xcosy
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